5分彩怎么买欢迎您的到來!

<p id="7zttv"><output id="7zttv"><menuitem id="7zttv"></menuitem></output></p>
<p id="7zttv"></p>
<p id="7zttv"></p>

<pre id="7zttv"></pre><p id="7zttv"></p>
<p id="7zttv"></p>

<p id="7zttv"><output id="7zttv"></output></p>

<p id="7zttv"><delect id="7zttv"><menuitem id="7zttv"></menuitem></delect></p><output id="7zttv"></output>
<pre id="7zttv"><output id="7zttv"></output></pre>
<pre id="7zttv"><output id="7zttv"></output></pre>

<pre id="7zttv"></pre>

<pre id="7zttv"><output id="7zttv"></output></pre><p id="7zttv"></p>


<p id="7zttv"></p><p id="7zttv"></p>

<p id="7zttv"></p>

<p id="7zttv"><output id="7zttv"><menuitem id="7zttv"></menuitem></output></p>

<noframes id="7zttv"><output id="7zttv"><output id="7zttv"></output></output>

<p id="7zttv"><delect id="7zttv"></delect></p>
四字詞語 口號 名人名言 順口溜 祝福語 短信 教學文檔 教學總結 教學反思 考研 自考 企業管理 營銷 人力 財務 個人創業 求職指南 廚藝教學 物業 管理文庫 謎語

當前位置:得優網教學文章免費教案數學教案高三數學教案函數的單調性

函數的單調性

    06-21 11:25:38    瀏覽次數: 372次    欄目:高三數學教案

標簽:人教版高三數學教案,高三文科數學教案,http://www.562527.site 函數的單調性,

  冪函數、指數函數和對數函數·函數的單調性(一)·教案

    

     教學目標

     1.使學生理解函數單調性的概念,并能判斷一些簡單函數在給定區間上的單調性.

     2.通過函數單調性概念的教學,培養學生分析問題、認識問題的能力.通過例題培養學生利用定義進行推理的邏輯思維能力.

     3.通過本節課的教學,滲透數形結合的數學思想,對學生進行辯證唯物主義的教育.

     教學重點與難點

     教學重點:函數單調性的概念.

     教學難點:函數單調性的判定.

     教學過程設計

     一、引入新課

     師:請同學們觀察下面兩組在相應區間上的函數,然后指出這兩組函數之間在性質上的主要區別是什么?

     (用投影幻燈給出兩組函數的圖象.)

     第一組:

    

     第二組:

    

     生:第一組函數,函數值y隨x的增大而增大;第二組函數,函數值y隨x的增大而減。

     師:(手執投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數的主要區別.當x變大時,第一組函數的函數值都變大,而第二組函數的函數值都變。m然在每一組函數中,函數值變大或變小的方式并不相同,但每一組函數卻具有一種共同的性質.我們在學習一次函數、二次函數、反比例函數以及冪函數時,就曾經根據函數的圖象研究過函數的函數值隨自變量的變大而變大或變小的性質.而這些研究結論是直觀地由圖象得到的.在函數的集合中,有很多函數具有這種性質,因此我們有必要對函數這種性質作更進一步的一般性的討論和研究,這就是我們今天這一節課的內容.

     (點明本節課的內容,既是曾經有所認識的,又是新的知識,引起學生的注意.)

     二、對概念的分析

     (板書課題:函數的單調性)

     師:請同學們打開課本第51頁,請××同學把增函數、減函數、單調區間的定義朗讀一遍.

     (學生朗讀.)

     師:好,請坐.通過剛才閱讀增函數和減函數的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?

     生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.

     師:說得非常正確.定義中用了兩個簡單的不等關系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數的單調遞增或單調遞減的性質.這就是數學的魅力!

     (通過教師的情緒感染學生,激發學生學習數學的興趣.)

     師:現在請同學們和我一起來看剛才的兩組圖中的第一個函數y=f1(x)和y=f2(x)的圖象,體會這種魅力.

    

     (指圖說明.)

     師:圖中y=f1(x)對于區間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區間[a,b]上是單調遞增的,區間[a,b]是函數y=f1(x)的單調增區間;而圖中y=f2(x)對于區間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區間[a,b]上是單調遞減的,區間[a,b]是函數y=f2(x)的單調減區間.

     (教師指圖說明分析定義,使學生把函數單調性的定義與直觀圖象結合起來,使新舊知識融為一體,加深對概念的理解.滲透數形結合分析問題的數學思想方法.)

     師:因此我們可以說,增函數就其本質而言是在相應區間上較大的自變量對應……

     (不把話說完,指一名學生接著說完,讓學生的思維始終跟著老師.)

     生:較大的函數值的函數.

     師:那么減函數呢?


函數的單調性由www.562527.site收集及整理,轉載請說明出處www.562527.site
www.562527.site
     生:減函數就其本質而言是在相應區間上較大的自變量對應較小的函數值的函數.

     (學生可能回答得不完整,教師應指導他說完整.)

     師:好.我們剛剛以增函數和減函數的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應該抓住哪些關鍵詞語,才能更透徹地認識定義?

     (學生思索.)

     學生在高中階段以至在以后的學習中經常會遇到一些概念(或定義),能否抓住定義中的關鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數學及其他各學科的重要一環.因此教師應該教會學生如何深入理解一個概念,以培養學生分析問題,認識問題的能力.

     (教師在學生思索過程中,再一次有感情地朗讀定義,并注意在關鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當的提示.)

     生:我認為在定義中,有一個詞“給定區間”是定義中的關鍵詞語.

     師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關鍵詞語,在學習幾個相近的概念時還要注意區別它們之間的不同.增函數和減函數都是對相應的區間而言的,離開了相應的區間就根本談不上函數的增減性.請大家思考一個問題,我們能否說一個函數在x=5時是遞增或遞減的?為什么?

     生:不能.因為此時函數值是一個數.

     師:對.函數在某一點,由于它的函數值是唯一確定的常數(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區間泛泛談論某一個函數是增函數或是減函數呢?你能否舉一個我們學過的例子?

     生:不能.比如二次函數y=x2,在y軸左側它是減函數,在y軸右側它是增函數.因而我們不能說y=x2是增函數或是減函數.

     (在學生回答問題時,教師板演函數y=x2的圖像,從“形”上感知.)

     師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區間”.這說明函數的單調性是函數在某一個區間上的性質,但這不排斥有些函數在其定義域內都是增函數或減函數.因此,今后我們在談論函數的增減性時必須指明相應的區間.

     師:還有沒有其他的關鍵詞語?

     生:還有定義中的“屬于這個區間的任意兩個”和“都有”也是關鍵詞語.

     師:你答的很對.能解釋一下為什么嗎?

     (學生不一定能答全,教師應給予必要的提示.)

     師:“屬于”是什么意思?

     生:就是說兩個自變量x1,x2必須取自給定的區間,不能從其他區間上。

     師:如果是閉區間的話,能否取自區間端點?

     生:可以.

     師:那么“任意”和“都有”又如何理解?

     生:“任意”就是指不能取特定的值來判斷函數的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).

     師:能不能構造一個反例來說明“任意”呢?

     (讓學生思考片刻.)

     生:可以構造一個反例.考察函數y=x2,在區間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數,那就錯了.

     師:那么如何來說明“都有”呢?

     生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數或減函數.

     師:好極了!通過分析定義和舉反例,我們知道要判斷函數y=f(x)在某個區間內是增函數或減函數,不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區間內任取兩個自變量x1,x2,根據它們的函數值f(x1)和f(x2)的大小來判定函數的增減性.

     (教師通過一系列的設問,使學生處于積極的思維狀態,從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發散思維能力.)

     師:反過來,如果我們已知f(x)在某個區間上是增函數或是減函數,那么,我們就可以通過自變量的大小去判定函數值的大小,也可以由函數值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關系.

     (用辯證法的原理來解釋數學知識,同時用數學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內涵和外延,培養學生學習的能力.)

    

[1] [2]  下一頁

函數的單調性相關文章

5分彩怎么买 幸运飞艇全天计划 欢乐生肖实时计划 腾讯分分彩计划 幸运飞艇精准计划
<p id="7zttv"><output id="7zttv"><menuitem id="7zttv"></menuitem></output></p>
<p id="7zttv"></p>
<p id="7zttv"></p>

<pre id="7zttv"></pre><p id="7zttv"></p>
<p id="7zttv"></p>

<p id="7zttv"><output id="7zttv"></output></p>

<p id="7zttv"><delect id="7zttv"><menuitem id="7zttv"></menuitem></delect></p><output id="7zttv"></output>
<pre id="7zttv"><output id="7zttv"></output></pre>
<pre id="7zttv"><output id="7zttv"></output></pre>

<pre id="7zttv"></pre>

<pre id="7zttv"><output id="7zttv"></output></pre><p id="7zttv"></p>


<p id="7zttv"></p><p id="7zttv"></p>

<p id="7zttv"></p>

<p id="7zttv"><output id="7zttv"><menuitem id="7zttv"></menuitem></output></p>

<noframes id="7zttv"><output id="7zttv"><output id="7zttv"></output></output>

<p id="7zttv"><delect id="7zttv"></delect></p>